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Applying the doublet representation we analyze the solutions of a Hamiltonian
system which has eigenstates with complex eigenvalues. The example of the
Friedrichs model allows us to show how the appearance of solutions with non-
Hilbert initial conditions is linked to the energy degeneration of the Hamiltonian
spectrum. We discuss the difficulties of giving a physical meaning to the growing
or decaying non-Hilbert solutions. We also suggest a way to circumvent the prob-
lem of the anomalous probabilities related to both complex energy eigenvalues and
degeneration of the spectrum. ©1998 American Institute of Physics.
@S0022-2488~98!02307-X#

I. INTRODUCTION

The doublet representation1 offers a useful way to study the dynamical evolution of bo
Hilbert and non-Hilbert solutions of a Hamiltonian system. In the scheme of this formalism
physical system is represented, not only by its wave functionsw~v! but also by a partnerw!(v).
These two functions allow us to construct an invariant scalar that, in case of Hilbert s
becomes the probability of the appearance of the corresponding state. For non-Hilbert sol
the product of the wave function and its partner remains an invariant scalar, but its probab
interpretation is under discussion. Precisely in this work we apply the doublet representa
show the difficulties of giving a physical interpretation to non-Hilbert solutions and we analyz
relation between energy degeneration and the appearance of complex eigenvalues. The
computations performed in the frame of the Friedrichs model allow us to study the condition
the interaction Hamiltonian must satisfy to keep the spectrum in the real domain. In the othe
we show how to circumvent the problem of badly behaved probabilities by means of defin
‘‘reduced’’ space that solves the degeneration problem.

The paper is organized as follows: in Sec. II we make a brief review of Ref. 1. In Sec. I
analyze which initial conditions correspond to states in Hilbert spaceH and which ones corre
spond to non-Hilbert states. Section IV is devoted to the study of the anomalous behav
probabilities and mean values for non-Hilbert states. The conditions that the interaction
satisfy in order to obtain a real spectrum are studied in Sec. V. In Sec. VI we find a basis
reduced space where the energy degeneration is removed. Finally, in Sec. VII we draw ou
conclusions.

II. THE DOUBLET REPRESENTATION

Hamiltonian equations have, in general, well-defined continuous solutionsw~v! that may or
may not belong toH. But in both cases it is possible to define a ‘‘partner’’ of the wave functi
namelyw!(v), that is not necessarily the complex conjugate ofw~v!.1 Then, solutions of the
Hamiltonian equations will be represented by the ‘‘doublet’’ (w,w!). In the particular case wher

a!Fellow of CONICET, Argentina.
b!Electronic mail: levinas@iafe.uba.ar
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wPH, solutions satisfyw!5w* , wherew* is the complex conjugate ofw. In Ref. 1 we have
applied this formalism to study the Friedrichs Hamiltonian and we have obtained that the
equations in the doublet representation read as

v0w11lE
0

`

g~v!w~v!dv5 i ẇ1 , ~1!

vw~v!1lg~v!w15 i ẇ~v!, ~2!

v0w1
!1lE

0

`

g~v!w!~v!dv52 i ẇ1
!, ~3!

vw!~v!1lg~v!w1
!52 i ẇ!~v!, ~4!

wherew1 ,w1
!,w(v),w!(v) are the wave functions of the doublet representation~the first two for

the discrete mode!, lPR is the coupling constant,v0PR1 is the discrete eigenvalue of the fre
Hamiltonian, 0<v,` is the continuous spectrum, andg(v)5g* (v) stands for the interaction
function.

We demand that wave functions satisfy the following natural conditions:

w1w1
!1E

0

`

w~v!w!~v!dv,`, ~5!

~w1
!!!5w1 , @w!~v!#!5w~v!. ~6!

With these conditions, the solution to system~1!–~4! is

w1~ t !5
1

Aa8~z0!
w̃1e2 iz0t1E

0

` lg~ṽ !

a~ṽ!
w̃~ṽ !e2 ivtdṽ, ~7!

w1
!~ t !5

1

Aa8~z0!
w̃1

!e1 iz0t1E
0

` lg~ṽ !

a~ṽ!
w̃!~ṽ !e1 ivtdṽ, ~8!

w~v,t !5
1

Aa8~z0!

lg~v!

z02v
w̃1e2 iz0t1w̃~v!e2 ivt1E

0

` l2g~v!g~ṽ !

~ṽ2v!a~ṽ!
w̃~ṽ !e2 i ṽtdṽ, ~9!

w!~v,t !5
1

Aa8~z0!

lg~v!

z02v
w̃1

!e1 iz0t1w̃!~v!e1 ivt1E
0

` l2g~v!g~ṽ !

~ṽ2v!a~ṽ!
w̃!~ṽ !e1 i ṽtdṽ,

~10!

where

z0~l!5v01l2E
0

` g2~v!

~z0~l!2v!
dv, ~11!

a~z!5v02z2l2E
0

` g2~v!

z2v
dv, ~12!

a85da/dz, and„w̃1 ,w̃(ṽ)), „w̃1
!,w̃!(ṽ)) are the eigenfunctions of the free plus the interact

Hamiltonians. The singularities inã(ṽ) and (ṽ2v)21 must be avoided making the shift6 i e.
We do not write it explicitly in order not to complicate the notation. A main characteristic of
solutions~7!–~10! is that they behave in a continuous way when the coupling constantl goes to
zero.

When„w1 ,w(v)… belongs toH, we have
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w1
!5w1* and w!~v!5w* ~v!.

In this particular case, Eq.~5! implies that

0<w1w1
!<1,

0<E
v1

v2
w~v!w* ~v!dv<1.

If @v1 ,v2# is any nonempty interval, the last integral corresponds to a well-defined probab

III. NON-HILBERT INITIAL CONDITIONS

From Eqs.~7!–~10! we can see thatw! equalsw* when z0PR. In this case, the solution
belong toH. But as we can obtain Hilbert solutions, even for those Hamiltonians that
complex eigenvalues, we are now interested in determining, for nonrealz0 , which initial condi-
tions correspond to those states.

Initial conditions in H imply that w1
!(t50)5w1* (t50) and w!(v,t50)5w* (v,t50).

When analyzing the solutions~7!–~10! to the equations of motion, we see that this relation
conjugation holds true for any time value if the first terms of the rhs in~7!–~10! cancel with the
corresponding residue evaluated inz0 . It is easy to see that these four conditions reduce to
following two:

2p i ResFlg~v!

a~v!
w̃~v!,z0G52

1

Aa8~z0!
w̃1 , ~13!

2p i ResFlg~v!

a~v!
w̃!~v!,z0G52

1

Aa8~z0!
w̃1

!. ~14!

An illustrative example with initial conditions inH that satisfy~13! and ~14! is the general
state whose initial conditions coincide with the discrete eigenstate of the free HamiltonianH0 :

w1~ t50!5w1
!~ t50!51, w~v,t50!5w!~v,t50!50,

and evolve with the complete HamiltonianH. Indeed, performing the change of basis~7!–~10!,
we obtain that

w̃~v!5
lg~v!

a~v!
,

and replacing it in Eq.~13!, we see that

2p i ResFlg~v!

a~v!
w̃~v!,z0G52p i ResFl2g2~ z̃!

a2~ z̃!
,z̃5z0G

52p i ResF 2 i

2p

1

a~ z̃!
,z̃5z0G

52
1

a8~z0!
52

1

Aa8~z0!
w̃1 , ~15!

which is precisely that condition. This is also true for condition~14!. Here we have used

a1~v!2a2~v!522p il2g2~v!.

On the other hand, one state whose initial values satisfy neither condition~13! nor condition
~14! is, for example, the discrete eigenstate of the Hamiltonian,
 16 Apr 2009 to 157.92.44.72. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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w̃15w̃1
!51 and w̃~v!5w̃!~v!50,

that it is obviously out ofH.
Finally, we note that there are initial conditions which satisfy either~13! or ~14! but not both,

and other ones which satisfy neither, but are not eigenstates ofH. Nevertheless, all of them obe
the ‘‘normalization’’ condition~5!.

IV. PROBABILITY BEHAVIOR OUT OF HILBERT

To characterize the physical behavior of non-H states, we should not consider the tempo
evolution of the wave functions only, since each one alone does not provide information
about transition probabilities or about the mean values. For example, the discrete eige
(w̃1 ,w̃1

!) whose components evolve withe2 iz0t andeiz0t, respectively, must not be interpreted
two decaying and growing states, because, in spite of the fact that they seem to be so, they
single stationary state satisfying

w̃1~ t !w̃1
!~ t !5w̃1~0!w̃1

!~0!51,

w̃~ ṽ,t !w̃!~ṽ,t !5w̃~ ṽ,0!w̃!~ṽ,0!50,

as it may be seen from Eqs.~7!–~10!.
Nevertheless, when evaluating probabilities for a general non-Hilbert state, including st

ary ones, we see that—even though total ‘‘probability’’ is normalized to unity@see Eq.~5!#—the
partial probability of finding the state in a bounded interval of energy may be out of the int
@0,1# or be a complex number. To investigate the nature of this problem let us consid
example. From Eqs.~7!–~10!, the ‘‘probability’’ of being in the discrete eigenstate ofH is

w1w1
!5

1

a8
, ~16!

and the ‘‘probability density’’ of finding the system with continuous energyv is

w~v!w!~v!5
1

a8

l2g2~v!

~z02v!2 . ~17!

Expanding the probability of finding the system in the discrete state up to the second order
interaction constantl, we find

w1w1
!512l2E

0

` g2~v!

~v02v!2 dv, ~18!

whereas for the probability density of finding it with a continuous energyv, we obtain

w~v!w!~v!5l2
g2~v!

~v02v!2 . ~19!

So in this approximation we have

w1w1
!1E

0

`

w~v!w!~v!dv51.

We want to point out some features from the previous expressions

~1! Probability densities obey the condition expressed in~5!.
~2! The probability density~19! has a pole inv5v0 .
~3! This pole produces complex ‘‘probabilities’’ in general and the ‘‘probability density’’ may

complex or greater than unity in its neighborhood.
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Statements~1!, ~2!, and~3! show us the nature of the problem and suggest a way to circ
vent it. In fact, when we findv0 as the result of a measurement of the energy of the system
do not know whether the corresponding state is the discrete eigenvector, the continuous
with the same eigenvalue, or a linear combination of both. Then, it seems that we are not a
to treat them as separated states assigning different probabilities to them because we
distinguish these states through energy measurements. But if we compute the probability to
v0 as the probability of the system to be in the discrete state plus the probability of the sys
be in the continuum in a neighborhood ofv0 , the problem gets solved by itself because t
infinite terms involvingv0 cancel each other in thel2 approximation, i.e.,

P @v02D,v01D#5w1w1
!1E

v02D

v01D

w~v0!w!~v0!dv

512l2E
0

v02D g2~v!

~v02v!2 dv2l2E
v01D

` g2~v!

~v02v!2 dv,

does not have the problems mentioned in the above statements~2! and ~3!.
Nevertheless, this is only a second-order solution. It can be seen after a straightfo

computation that in the next step of the expansion~fourth-order! complex contributions reappea
from each term of the probability densities and do not cancel each other. This is so because
will see, this is not the right way to solve the problem.

Due to the bad behavior of probabilities out ofH, we have studied the behavior of anoth
meaningful magnitude: the mean value. In the frame of the doublet representation we can
alize the expression of the free Hamiltonian mean value in any state as

^H0~ t !&5v0w1~ t !w1
!~ t !1E

0

`

vw~v,t !w!~v,t !dv

5v0F 1

Aa8~z0!
w̃1e2 iz0t1E

0

` lg~ṽ !

a1~ṽ !
w̃~ ṽ !e2 i ṽtdṽG

•F 1

Aa8~z0!
w̃1

!e1 iz0t1E
0

` lg~ṽ !

a2~ṽ !
w̃!~ṽ !e1 i ṽtdṽG

1E
0

`F 1

Aa8~z0!

lg~v!

z02v
w̃1e2 iz0t1l2g~v!

3E
0

` g~ṽ !

a1~ṽ !~ṽ2v!
w̃~ṽ !e2 i ṽtdṽ1w̃~v!e2 ivtG

3F 1

Aa8~z0!

lg~v!

z02v
w̃1

!e1 iz0t1l2g~v!

3E
0

` g~ṽ !

a2~ṽ !~ṽ2v!
w̃!~ṽ !e1 i ṽtdṽ1w̃!~v!e1 ivtGvdv,

whose instabilities come from the real contributions of exponentialse6 iz0t. That is to say, the
mean value has oscillating terms~which correspond to real frequenciesv! and growing or decay-
ing waves coming from the imaginary contribution of the ‘‘frequency’’z0 . These instabilities do
not cause problems to Hilbert states because they satisfy conditions~13! and~14!, so the complex
exponentials cancel each other and do not produce vanishing or indefinitely growing terms.
other hand, non-H states will have anomalous terms in the mean values of the Hamiltonian w
diverge for growing time values, except when they are eigenstates ofH. So here we also have
problem for the mean values evaluated in non-H states.
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In conclusion, we point out that, in spite of the fact that it is possible to find the dynam
evolution for any doublet, it is difficult to assign probabilities or mean values~i.e., to give physical
meaning! to them. In the next section we show that this problem is linked to the fact tha
probability of measuring energyv0 has contributions coming from the discrete state plus con
butions from any interval aroundv0 , belonging to the continuum.

V. INTERACTIONS THAT GENERATE REAL z0

In the previous sections we have identified the appearance of anomalous probabilities wz0

being a nonreal number. Now we will show that the problems created by this complex qu
arise from the fact that the improper integrals aroundv0 yield a complex eigenvalue of th
complete Hamiltonian. To show the explicit limit between complex and real eigenvalues, we
use of the solutions~7!–~10! which are continuous inl ~see Ref. 1!. Thus, we can suppose thatz0

in expression~11! can be expanded as a power series ofl, takingz0ul505v0 ,

z05v01l2E
0

` g2~v!

~v02v!
dv2

2

3
l4E

0

` g2~v!

~v02v!
dvE

0

` g2~v8!

~v02v8!2 dv81¯ . ~20!

As we can see, improper integrals appear in the expansion ofz0 . A generic coefficient in the serie
always contains a factor like

g2~v!

~v02v!n ,

implying the appearance of poles in the function under integration which—when computed
complex plane—give imaginary contributions toz0 . These divergences point out the influence
the degeneration in the free Hamiltonian spectrum: when the eigenstate that corresponds
discrete eigenvalue of the free Hamiltonian interacts with the eigenstate of the continuum
energyv0 and its neighborhood, complex eigenvalues of the complete Hamiltonian appear.
has been shown in Ref. 2, the reality of the discrete eigenvaluez0 is related tog(v) evaluated in
the eigenvalue.

Expression~20! tells us that, if we confine ourselves to the second-order expansion,z0 is real
wheng(v0)50. This is in accordance with well-known results that establish that

g~v0!50⇒G~2!5pl2g2~v0!50,

whereG (2) is the second order inl contribution to half the inverse of time life.3–5 But this is not
true for higher orders in thel expansion because the conditiong2(v0)50 is not sufficient to
guarantee that the whole integral be nondivergent.

From the previous results, we conclude that the condition thatg(v) must satisfy in order to
obtain a real spectrum is

lim
l→0

g2~v!

„z0~l!2v…

n,`, ;nPN , ~21!

for anyv belonging to an interval that containsv0 because, when performing the expansion~20!,
condition ~21! guarantees the reality of the expansion. This is equivalent to requesting that

lim
l→0

z~l!5v0

does not belong to the support ofg(v).
A trivial example of interaction satisfying~21! is the Ohmic interactiong(v)5v with a

cutoff that leavesv0 out of the integration interval. In fact, any interaction that vanishes ov
finite interval aroundv0 is a trivial example.

A nontrivial interaction satisfying~21! is
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g~v!5H exp~v02v!21, if v0,v;

0, if v05v;

exp2~v02v!21, if v0.v,

~22!

which removes, in a continuous way, the interaction between the degenerate states of t
Hamiltonian.

For interactions satisfying condition~21!, the spectrum of the complete Hamiltonian is re
no pathologies appear in the evaluation of probabilities, and the whole problem can be form
in Hilbert space with no need of enlarging the state space to the doublet one in order to diago
H.

VI. A REDUCED SPACE

In general cases in whichg(v) does not satisfy condition~21! andz0 is not necessarily a rea
number, we may remove the degeneration that causes anomalous probabilities defining
basis with the following procedure~which we will develop in Dirac notation because it is clear
in this case!.

To exclude the continuous eigenvaluev0 from the continuous spectrum~thus removing the
degeneration! we define the set

C 5$v/0<v<v02a or v01a<v%, ~23!

with aPR, a.0. Next, we define the orthogonal basis:

uL&5L1u1&1E
v02a

v01a

l~v!uv&dveH, ~24!

$uv r&%5$uv&/vPC %, ~25!

where the basis vectors satisfy

^LuL&5L1L1* 1E
v02a

v01a

L~v!L* ~v!dv51,

~26!

^v r uL&5^Luv r&50 and ^v r uv r8&5d~v r2v r8!.

In this basis the matrix elements ofH are

^LuHuL&5v0L1L1* 1lE
v02a

v01a

g~v!@L1* L~v!1L1L* ~v!#dv

1E
v02a

v01a

vL~v!L* ~v!dv[L~l!, ~27!

^v r8uHuv r&5v rd~v r82v r !, ~28!

^v r uHuL&5lL1g~v r !. ~29!

With them, we can define the HamiltonianH̃ which acts on the ‘‘reduced’’ space as

H̃5L~l!uL&^Lu1E
C

vuv&^vudv1E
C

lg~v!@L1uL&^vu1L1* uv&^Lu#dv. ~30!

Diagonalizing H̃, we obtain that its discrete eigenvalue satisfies the following recur
equation:
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L̃~l!5L~l!1l2E
C

L1L1* g2~v!

~L̃~l!2v!
dv. ~31!

Taking into account the results of Sec. V, we have thatL̃(l) will be real ~and the probability
well defined! if lim l→0 L̃(l) does not belong to the support ofg(v), i.e., if

lim
l→0

L̃~l!5 lim
l→0

L~l!5v01E
v02a

v01a

~v2v0!L~v!L* ~v!dv ~32!

does not belong to the continuous set$v r% @we have used the normalization condition~26!#. As the
function under integration in~32! is small enough nearv0 , it will be always possible to define
some real numbera nearv0 to satisfy

v02a<L~l50!<v01a.

Then, we conclude thatH has a real spectrum, the wave functions belong toH, and the prob-
abilities are well defined in the reduced space spanned by the basis~24!–~25!.

We also notice that the reality ofL̃(l) in ~31! is guaranteed from a sufficiently small value
(v02a) and it remains in thea→0 limit. In this case

lim
a→0

L̃[W0PR,

and the spectrum remains nondegenerated because the continuousv0 energy value has bee
removed from the continuous spectrum. So, the eigenfunction which evolves with exp(iz0t) be-
comes the Hilbert eigenfunction which evolves with exp(iW0t) defined in the reduced space.

VII. CONCLUSIONS

We have shown that the states which do not satisfy conditions~13! and~14! do not belong to
H. So, even though we can predict their temporal evolution, it is impossible to define e
well-behaved probabilities or nondivergent mean values for them. Non-Hilbert states are us
describe the dynamical evolution of physical wave functions, but they cannot be conside
having the same physical nature as those of Hilbert space~the same as plane waves do not ha
the same physical nature as ordinary Hilbert states!.

Taking into account that the existence of non-Hilbert states is linked to the appearan
nonreal eigenvalues and that these eigenvalues are related to the degeneration of the Ham
spectrum, we have shown how to solve the problem. To do so we define a reduced bas
generates wave functions which represent states with well-defined probabilities and mean

ACKNOWLEDGMENTS

This work was partially supported by the following grants: Grant No. OI1*-CT94-0004 of the
European Community, CONICET PID Grant No. 3183/93, and University of Buenos Aires G
No. EX-198.

1M. Castagnino, G. Domenech, M. Levinas, and N. Ume´rez, J. Math. Phys.37, 2107~1996!.
2G. Parravicini, V. Gorini, and E. C. G. Sudarsham, J. Math. Phys.21, 2208~1980!.
3E. C. G. Sudarsham and Ch. V. Chiu, Phys. Rev. D47, 2602~1993!.
4C. Cohen-Tannoudji, B. Diu, and F. Laloe,Quantum Mechanics~Hermann, Paris, 1977!.
5P. Exner,Open Quantum Systems and Feynman Integrals~Reidel, Amsterdam, 1985!.
 16 Apr 2009 to 157.92.44.72. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp


