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The ground state for Kaluza Klein cosmological models with more than one 

dilaton field is considered. The dimensional reduction is performed and the 

equations of motion for the dilaton fields are considered. The normal modes of 

oscillation are found, one of them, ~,, being the conformal factor in front of the 

metric for the true four-dimensional space-time. It is shown that a stable mini- 

mum exists when both the cosmological term and all the scalar curvatures of the 

extra-dimensional subspaces are negative. If all these scalar curvatures are 

positive, the extra-dimensional subspaces collapse and the quantum effects 

should be taken into account to stabilize them. All other combinations of the 

signs of scalar curvatures lead to decompactification of some of the subspaces. 

Some cosmological applications are discussed. One of them concerns the 

possibility of constructing Big-Bang cosmological models starting from a non- 

singular higher-dimensional space-time. 

1. I N T R O D U C T I O N  

K a l u z a - K l e i n  type theories became very popular  dur ing  the last decade, 

because they provide q u a n t u m  field theory with the desired symmetries in 

a na tu ra l  geometrical  way (see, for example, [1 ]  and  references cited 

therein). Moreover,  the idea of extra dimensions,  found some foundat ions  

in the mode rn  string theory [2] .  Applicat ions to cosmology have also been 

considered ([-3] and  references cited therein), bu t  in most  of the cosmologi-  

cal applications,  the g round  state (only the conformal  degree of freedom, 
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all higher modes as well as gauge fields suppressed) contains only one 

dilaton field. 

In this paper we consider a more general ground state, where the extra 

dimensions are divided into several compact subspaces, each of them 

endowed with a different space-time coordinate-dependent conformal 

factor. Taking a four-dimensional space-time, we thus obtain, in general, 

several dilaton fields coupled among themselves. 

The aim of this work is to analyze the general conditions for the extra 

dimensions not decompactified, and discuss several possible cosmological 

implications. 

In this work the potential V(x )  which determines the evolution of the 

system (compactification or decompactification) is not generated by exter- 

nal sources, but comes from the internal dimensions of the geometry. This 

approach allows us to study the qualitative behavior of the evolution of 

the universe in a non-a-prior i  fixed geometry. The type of evolution is 

determinated by the sign of the cosmological constant A and the sign of the 

curvature scalar of the internal subspaces. Particular vacuum solutions can 

be seen in [7] ,  where the internal space geometry is an m-dimensional 

torus. External sources are studied, for instance in [8],  where a perfect 

fluid in ( l + 3 + 3 ) - d i m e n s i o n s  is studied. In [9] ,  a 10-dimensional 

Robertson-Walker cosmological model is proposed, leading to the Higgs 

potential. Instead, we treat the problem in a less restrictive way (i.e., our 

generic n-dimensional geometry depends not only on the time variable, but 

on the four space-time coordinates). 

The paper is organized as follows, in Section 2 the general formalism 

is developed, and the expression for the energy-momentum tensor for 

dilaton fields as well as the equations of motion are derived. The normal 

(physical) modes are found in Section 3. In Section 4 we consider two 

particular examples: namely, the cases of one and two dilaton fields. The 

condition for having a minimum in the potential is found, and also the 

condition for the extra dimensions to remain compactified. The general 

case is investigated in Section 5. The discussion completes the paper; there 

we consider some cosmological implications. 

2. ENERGY M O M E N T U M  TENSOR AND FIELD 

FOR DILATON FIELDS 

We will consider the d = m + n dimensional element 

ds2 = gab  dZA dz"  = g,v  dx" dxV + gii dY i dY j 

where A, B =  1 ..... r e + n ;  #, v =  1 ..... m; i, j =  1,..., n. 

EQUATIONS 

(1) 
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As we are interested in the ground state for a cosmological model, we 

have already suppressed the off-diagonal terms gvj, and considered g,v as 

only a function of the space-time coordinates, i.e., 

g~v = g~v(X) (2) 

We use the following expression for the Ricci tensor 

C C C D C D 
RxB = I ' A B ,  C - -  I'AC.B -]- F A,F cD - F A D F  BC (3) 

where the F's are the Christoffel symbols. We choose the signature of the 

metric to be ( - ,  +,  + ,  + ,  +,..., + ). 

We will consider the go metric as being 

gi, j,(x, y)= h[z~(x) gi, j,(Y) (4) 

where iz, Jz . . . . .  1,..., n~z); with Z n~z) = n, l: 1,..., N, and 

= 6j',; gi, i,, p = 0 Vp # l 

Now the Ricci tensor for the complete metric reads 

R#, = 0 (5) 

Ri~, =/~i~k,- gi~, h~o h~) , 
)~ h<~ + h~z) n(r)h(r)~ 

J 

w h e r e / ~  is built from fx~(x) only and/~#k, is built from the fk (y ) .  Here 

; means covariant derivative with respect to the metric gu~, and h~t~x means 

0xh~ 0. 
Writing the total action 

1 
f d z; R : g A B R A B  S--  16~tG~ . ~ / ~  . ( R -  2A) ~ 

splitting it into space-time and extra dimensions parts, and then integrating 

over the extra dimensions variables we obtain 

S = 1-['16~zG~V'af [I t h ( ~ ) ~  (mR-ZA +otherterms) dmx 

where mg and mR are the metric and scalar curvature of the m-dimensional 

space-time respectively. 
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In order to obtain the usual Einstein action, we perform the following 

transformation 

(IlI/ ) -- (2)/(m-- 2) g.v = r 2 ~  with 02 = h~,S) (6) 

Taking into account Eqs. (5) and (6) we write the Einstein equations 

GAB = RAB-- �89 + AgAB = 0 

as 

i/]2 ntnvh(~ Z n~h(~176 R(t ) 1 

I [ 1 n,nvh(~)h(,,)x ~ ]  
(7) 

Gok, = a i l k l  - ~12 g i ,  k! 
\ h ( o /  l~ 2~ 2 

2 -- 2 ( 2 

R(,,,. h___~ t 1 
2 h~,,) -~ 202 ~ ~ n,nv z#z,  , h(l)h(l  ') 

+ , n" l_  h~z,) m-2\h{z,))l;.  

= -~h~,> ~,,k, (8) 

~ is built up with ?~ and [ is the covariant derivative with respect to 7,v. 

Here r  means 8 ~ .  

We see from Eq. (8) that Gok~ is proportional to g0k, Using this fact 
-o_/it is and G kz_0, we obtain that the factor is constant, so every R~t- ilkl; - -  

also constant. 

Defining ~o(z) through h(o = ln(q~(t)), we are able to write Eq. (7) as 

G~ = 8rcGT~,v (9) 

where 

-- 7~,v nlnv~p(z)~o(v):~ + (m-- 2) ~ ntq~o~P(o~ + V 
l 

(lO) 
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V being a potential, given by 

(11) 

Where by we see that Eq. (9) represents the Einstein equations for the 

metric ~,~ with a set of scalar fields acting as sources. 

We recall that the (P(t) are not uniquely defined; because h(~), are 

defined up to a constant factor. 

Using Eq. (8), we find the field equations for the dilaton fields 

1 {~l e (2)/(m_2)Zr, m,,~pt,.)~(l) 
[] (P(~) m -  2 + nz 

+ - -  m - 2  

/7 l 

C --  ( 2 ) / ( m  --  2)  Y'I' n l ' rp( l ' )e( l )  

_ 2Ae-(2)/(m 2)Xr'nt'~(t'l__ ~ nz, [](P(r)} 

l r  

(12) 

It is easy to see that the same equations can be obtained from the 
v conservation of the energy-momentum tensor, i.e., T~l v = 0. 

From the energy-momentum tensor (10) we can immediately write 

down the Lagrangian 

1 ~ 1 
- -  ~ ~ nA~ V 2P= T -  V - 2 ( m _ 2 i  , n rn jP  O)Cp<)~ - -  ~ 

where 

T =  -~,  ~ ntnz,q)(l)(p(F)~ + ~ nzqoo)cp(z);~ 
�9 l 

is the kinetic energy of the dilaton fields. We see that all the dilaton fields 

are mixed; thus, to define the physical fields we must find the transforma- 

tion to the normal modes. 

3. N O R M A L  M O D E S  F O R  T H E  S C A L A R  D I L A T O N  F I E L D S  

To obtain the normal modes of the dilaton fields we diagonalize the 

expression for the kinetic energy; which can be written in a matrix form as 
follows 
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T 1 -  

1 -  r 1 
=~v0 725-2 

where we have taken 

qh 

~2 

~ =  

~o2 

q~k 

The next step is to find a matrix 

the following transformations 

f/1 

t" 

+diag (1 ..... 1 )} ~7q5 (13) 

gl k 

C (with elements Cu) which makes 

H =  with H =  diag(21,..., 2.) 
CrHC 

(o = c q ,  

where Am are the eigenvalues of D and c T =  C -  1. 

Let us now consider the form of the following matricial equation 

CH = TC, i.e., 

C D  = 1 C 2 . . .  C 2 

m - - 2  + C  

n n 

=hc 

/ 21Cll 21 C12 . . .  21C ln \  

\<cn, <c~ 

(14) 

with Cj = E~ =1 Cjk 
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Equation (14) implies 

Ck 
- ( & -  1) Ckl 

m - 2  
Vk, l (15) 

Summing over l we obtain 

nCk 
= (2k - 1) Ck (16) 

m - 2  

Two cases can be considered 

i. Ck = 0. If 2k = 1, C would have no inverse matrix, so we would not 

be able to find a transformation between 40 and ~5. We conclude, 

then, that we need to have 2k r 1. 

ii. Ck r 0. Then we obtain/-k = (m + n - 2)/(m - 2) and some of them 

may be 2 k = 1. Taking the trace of H =  C r H C ,  and taking into 

account that C is an orthonormal matrix, it is easy to show that 

the eigenvalue 21 = (m + n - 2 ) / ( m -  2) appears only once, while 

2 = 1 is ( n -  1) times degenerated. We will choose 2, to be the first 

eigenvalue. 

Using the orthogonality condition, we obtain the following general 

form for the matrix C: 

/11  . . .  11 \ 
C = /  C21 C2n ) (17) 

,,4, . . .  4me 

where its coefficients obey the following constraints 

C j ,=0  Vj~>2 
l 

Y, CjtCkt = ,~:~ 
l 

(18) 

Written as a function of the new fields the potential V has the 

following structure 

V =  e - ( .~ ) / (m-  2~ co~ {A -- e (21/(W;~ oL JR1 e -(2~/(.f;)fL~<....,~ 

q- R2 e (2}/(x/n)f2(02""'(~ -~- "'" -1- Rne (2)/(,/;)y,(e2,...,eo] } (19) 
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After the diagonalization, it is easy to write the Euler-Lagrange 

equations for the normal modes. We get 

8V ~2 

Note that they are just the transformed equations for the geometrical 

dilaton fields ~0(l) [Eq. (12)], which we have obtained from the higher- 

dimensional Einstein equations. 

Thus we have proved the existence of the normal modes, and are now 

able to apply the well-known theorems of ordinary mechanics in order to 

understand the evolution of the system under consideration. However, first 

we will consider two illustrative examples. 

4. EXAMPLES 

4.1. One Dilaton Field 

Einstein equations for one dilaton field now read 

G~v=~,v n (m+n-2 )  + n ( m + n - 2 )  
m - 2  (P~ q)~ 2 ( m -  2) ~~ q~7~ 

1 
_[_ 2 co(2(m + n -- 2)/(m 2))q~/l~,uv = Ae (2n/(m -- 2))~o~,uv 

Gik=Gik m + n - 2  2 ( m -  2) e(Z(m+"--2)/(m 2))Og/k(2q)~;~-- n~~ 

1 e(2(m+ n 2)/(m_ 2)),P~ik ~ = Ae2~gik 
2 

(20) 

where quantities with ~ are constructed from 7u~ and those with ~ from 

g ik " 
The additional terms appearing in the first equation can be under- 

stood as the energy momentum tensor of the dilaton field 

T~v n(m+n-2) I 1 ~ ] 
= m - 2  ~o~q)v-~cP~ o 7~v 

[ 1  _ 2)/(m_ 2))q~ + Ae_(2n/(m_ 2))q~] ~,uv _~_ __ 2 ~, (2(m + n (21) 
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V ~ ' R < O  

Fig. 1. The effective potential V as a function of the metric factor h for a positive value of 

the cosmological constant  A and a negative value of the curvature R of the extra dimensions. 

In this case for any given initial conditions, the system tends to evolve towards larger values 

of h (decompactification). 

Where by we can read off the effective potential 

V(ep)=-�89  (2(m+n--2)/(m 2))~o~q_A e (2n/(m-2))qo (22) 

Now, we are able to study the effective potential as a function of two 

parameters, i.e., A and R. 

Four  different cases appear, depending on the sign of A and R. They 

are shown in Figs. 1-4. One can easily see that cases 1 and 4 represent 

decompactification and compactification (with V<0) ,  respectively; that is 

given a value of the kinetic energy of the field, it will evolve to infinitely 

large values in case 1, and to zero in case 4. 

Cases 2 and 3 are richer, because they show an extremum in the effec- 

tive potential. In case 2 one would have a stable point at the minimum of 

the potential (Vmin <0) ,  while in case 3 there is a maximum and it will 

depend on the initial conditions of the field whether we will have a case of 

compactification or decompactification. 

Now, we will compute the value of the potential at the extremum. 

"V" ' R < O  

> 

...... h 

Fig. 2. The effective potential V as a function of the metric factor h for A < 0 and R < 0. In 

this case V has a min imum around which the system is able to stabilize by itself. 
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"V- R > O  

JX.>O 

h 

Fig. 3. The effective potential V as a function of h shows a cusp for A > 0 and /~ > 0. 

Depending on the initial value of h (whether hinltia ] is bigger or smaller than hcusp.) , the system 

will evolve to decompactification or compactification. 

Going back to h = exp(q~) the effective potential will be 

V =  h-(Z~/(m-2))(- �89 2R + A) (23) 

Differentiation gives the condition for extrema 

OV m+n-2_R 
- -  = => hextr n A 8h 0 2 _ (24) 

We see that the condition for having extrema is fulfilled when/~  and 

A have the same sign. So, 

A(2m+n-2) Im+n-2~]-(n/(m-2)) (25) 
V e x t r -  2 m - - ~ - - n n ~ 2  v/ 

We see that for negative values of A we will obtain a minimum, where 

Wmi n is negative (Fig. 2), while for positive values of A we will obtain a 

maximum, where Vmax is positive (Fig. 3). 

Fig. 4. 

"V-, R > O  

A . < O  

> 
f h 

When A < 0 and R > 0, the form of the effective potential is such that for any initial 

value of h the dilaton fields evolve to a compactified value. 
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v computing T~l ~ 

For the sake of completeness we write down the equation of motion 

for go. This can be deduced from the expression (21) for the T,~ and then, 

= 0 or working out Eq. (20) to eliminate R 

2 go; Ae (2n/(rn 2))q9 
I; m + n - 2  

/~ 8V 
- - e -  ( 2 ( m  + ~ - 2 ) / ( m  - Z))~o = __ _ _  ( 2 6 )  

n 8go 

4 . 2 .  T w o  D i l a t o n  F i e l d s  

Let us now consider the case of two dilaton fields, one of them in k 

dimensions and the other in n - k  dimensions. They are represented by the 

vector 

= ~i 

go2 2 } n - k 

(27 )  

From the general expression (11) for the effective potential we obtain 

V= le (1/(m-2))~k~o~+(~--k)~~ - -Rle  -2~1 - R 2  e-z~~ (28) 

In Section 3 we have shown that we must "rotate" the system of fields 

qh, go2 to the normal modes ~1, 92 to diagonalize the kinetic energy. To 

do so, we perform the following transformation [after using matrix C, 

Eq. (5)] 

where 

i n - k  

1 k 

(29) 

k 

C2 = E C2j 
j = l  
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Now, we are able to express the effective potential in terms of the 

normal modes 

V = � 8 9  -- 2))~t [2A -- e-(2rpl/xfn)(/] 1 e -(2/c2)r -- (k/n)) 

+ / ] 2 e ( 2 / C 2 ) ( k / n ) ( ~  (30) 

Considering the condition for extrema in ~2, keeping 01 constant, i.e., 

~ff-~ff2 = 0  
01 = const 

we obtain 

~x,~ / ] 1  n - k 
e(2/c2)02 - -  

t]2 k (31) 

This equation shows that to have extrema, /]1 and / ]2  must have the 

same sign. 

The condition for a minimum 

gives 

(~(.~2 ~p~nin > 0 

/]1 < 0 and / ] 2  < 0 

Studying the conditions to have extrema in 0~ we get 

e -  (x/'n/(m -- 2))~lextr) - -  A ~ -  in 

2(m - 2) + n 

where 

..@ = 1[/]1 e - ( 2 / c 2 ) ~ 1 ( 1 -  (k/n)) q_ ~2e(2/C2)(k/n)(o2"] 

(32) 

(33) 

So, conditions (32) and (34) must be satisfied to have a minimum in 

both variables, while all the inequalities must be reversed to have a 

maximum. 

A < 0 (34) 

We see that A and ~ must have the same sign. 

When we impos e the condition for having a minimum on the second 

derivative of V, we obtain 
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The other possibilities of combinations of signs can be studied 

straightforwardly from the expression (30) for the potential. The result is 

A > 0, /~1 < 0, /~2 < 0 decompactification 

A < 0, E 1 > 0, R2 > 0 compactification 

and the remaining combinations, where just one R(l) is smaller than zero, 

gives decompactification in this coordinate h(0. 

This picture for the two dilaton fields resembles that one about the 

previous example. So, one can imagine for this second example that 

Figs. 1-4 have an extra axis but with the same qualitative behavior for the 

effective potential. 

The results of these two examples lead us to the generalization of the 

following section. 

5. GENERAL CONDITIONS FOR COMPACTIFICATION AND 

M I N I M U M  IN V 

Now that we have illustrated some aspects of the dilaton fields, we will 

show on general grounds that this behavior is not a particular charac- 

teristic of the examples considered in the last section, but a general 

qualitative behavior. 

Given an initial value of the ~0(t), the system of fields will evolve to 

lower values of the effective potential, following the steepest direction of 

variation, given by ~' V, the gradient of V. 

We are mainly interested in studying the phenomenon of compactifica- 

tion (i.e., h(0-+0, so q) (t) -+ - Go ). Then, the mathematical condition to 

impose to the potential is that its gradient must lie in the first quadrant 

formed when one plots V as a function of the variables q~(t~. That is, 

~V 
- - > 0  (35) 
0~oi 

" Taking the first partial derivative of the potential given by (11), we 

obtain 

(~r=--Re2Y~j(njcPj/(m-2')(Fli ~l ) 
a(Pi ~ A - Rfi)e-2q"-- m-2n-L _R(;)e -2o,; (36) 

Then, the condition for compactification (35) will be 

A - m -____22 k(i)e -2~~ ~ k (oe  -2'p~'~ < 0 (37) 

F/i l 

842/21/11-7 
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Now, let us suppose that any R(j~ >0. Then for A and qo(t)(l=/=j) fixed, 

the last inequality will not be fulfilled when ~0(j)--,-oo. So, to have 

compactification we must have 

i.e., 

R(~/> 0 Vl, for any sign of A (38) 

We will turn now to study the conditions for V to have a minimum, 

From Eq. (35) 

8V = 0  and ~3~o/2 ~= > 0  (39) 
rPmin (Omin 

m m 2  
A - ~  /~( l )e  -2~~ - - - -  R(i)e 2q}(i)= 0 (40) 

l n i  

multiplying by n i and summing we get 

nA - (n + m - 2) ~/~(l)e -- 2r = 0 (41) 
l 

So, replacing this expression for x" /~ e-2~o~i) into (40) we obtain z~t (/) 

k,e  2rP(' rain - -  niA (42) 
m - - 2 + n  

This is, in fact, the condition for extremum; to be a minimum the 

second condition in (39) must be satisfied 

8 2 V = (  2ni ~ 2 I A _ ~  ~,)e-2~o~,~ 
a~o~i ) \ m -  2} e--252j(nJ~~ 

(m2) ] m--  2 2 + R(oe -2~~ (43) 
FI i n i 

Computing its value at the minimum with the aid of Eq. (42) 

632V I ( 2rti ~ 2 
~ e - 2 y ' j  ( n y q ) ( j ) / ( m  - 2) )  

&P~i) lr~in \ m - -  2J 

x - A ( m - a ) ( l + m ~ 2 )  l m + n - 2  " > 0  (44) 
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So, for m > 2 (the space-times we are interested in) A must be negative 

and, from Eq. (42), all/~(0 must be negative in order to have a minimum 

in V. 

A < 0  and k o ) < 0  V/~  minimum in V (45) 

For the sake of completeness we give the value of the potential at the 

minimum 

6. DISCUSSION 

We have stressed in Section 4 that when A < 0 and /~(t)< 0 the effec- 

tive potential has a minimum that occurs at negative values. When dealing 

with gravitation, energy must be positive. So, we have to consider oscilla- 

tions around the minimum of the potential, in such a way that each field 

carries with it a kinetic energy large enough to reach a positive total energy 

(in spite of having negative energy for each individual field). 

Also, due to gravitational friction, the total energy density is not con- 

served; it diminishes during the expansion of the universe and increases 

during the contraction. To maintain the positive energy density we need to 

have oscillation of (some) normal modes. It would be interesting to take 

these facts into account in the inflationary scenario because inflation 

reduces the fluctuations. 

The results we have obtained let us speculate about the possibility of 

constructing Big-Bang cosmological models starting from a nonsingular 

multidimensional space-time [one of the h tends to infinity while the 

corresponding scalar factor of the cosmological model tends to zero, see 

Eq. (6)]. 

We saw that the input parameters of the effective potential are the 

cosmological A term, and the constant scalar curvatures of the extra- 

dimensional subspaces, /?{o. The qualitative behavior of the system of 

coupled scalar fields depends on the signs of these constant curvatures. It 

should be noted that the sign of a scalar curvature depends also on the 

signature of the subspace metric. For example, in order to obtain a 

negative value for a scalar curvature we can use either a negative curvature 

submanifold if the metric signature is positive (space-iike coordinate in this 

submanifolds) or some positive curvature submanifold if the metric is 

negative (time-like coordinates). This possibility was first considered in 

[4]. 
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It is possible, in principle, to consider the phase transitions from one 

pattern of subspaces to another pattern differing, say, by the number of 

dilaton fields or even by the sign of the scalar curvature. For this purpose, 

the formalism of the thin shells, first developed in [5] and applied to 

cosmological problems in [6], can be used. However, contrary to the 

ordinary four-dimensional cosmology, here we would need to consider a 

two-bubble-wall system in order to keep the dilaton fields and, thus, the 

extra-dimensional metric coefficients continuous across the walls. Then, 

these phases (patterns of subspaces) will survive as the volume increases. In 

this way the additional constraints on the structure of the extra-dimen- 

sional space can be obtained. However, such an investigation requires the 

knowledge of the solution between two bubble walls; this solution would 

be necessarily different from the ground state considered here (massive 

modes should be taken into account). We will investigate this problem in 

a subsequent paper. 
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